Epoxide-opening cascades in the synthesis of polycyclic polyether natural products.
نویسندگان
چکیده
The structural features of polycyclic polyether natural products can, in some cases, be traced to their biosynthetic origin. However in case that are less well understood, only biosynthetic pathways that feature dramatic, yet speculative, epoxide-opening cascades are proposed. We summarize how such epoxide-opening cascade reactions have been used in the synthesis of polycyclic polyethers (see scheme) and related natural products.The group of polycyclic polyether natural products is of special interest owing to the fascinating structure and biological effects displayed by its members. The latter includes potentially therapeutic antibiotic, antifungal, and anticancer properties, and extreme lethality. The polycyclic structural features of this class of compounds can, in some cases, be traced to their biosynthetic origin, but in others that are less well understood, only to proposed biosynthetic pathways that feature dramatic, yet speculative, epoxide-opening cascades. In this review we summarize how such epoxide-opening cascade reactions have been used in the synthesis of polycyclic polyethers and related natural products.
منابع مشابه
Synthesis of Marine Polycyclic Polyethers via Endo-Selective Epoxide-Opening Cascades
The proposed biosynthetic pathways to ladder polyethers of polyketide origin and oxasqualenoids of terpenoid origin share a dramatic epoxide-opening cascade as a key step. Polycyclic structures generated in these biosynthetic pathways display biological effects ranging from potentially therapeutic properties to extreme lethality. Much of the structural complexity of ladder polyether and oxasqua...
متن کاملLadder polyether synthesis via epoxide-opening cascades directed by a disappearing trimethylsilyl group.
Epoxide-opening cascades offer the potential to construct complex polyether natural products expeditiously and in a manner that emulates the biogenesis proposed for these compounds. Herein we provide a full account of our development of a strategy that addresses several important challenges of such cascades. The centerpiece of the method is a trimethylsilyl (SiMe(3)) group that serves several p...
متن کاملTotal syntheses of the squalene-derived halogenated polyethers ent-dioxepandehydrothyrsiferol and armatol A via bromonium- and Lewis acid-initiated epoxide-opening cascades.
Herein we describe in full our investigations leading to the first total syntheses of ent-dioxepandehydrothyrsiferol and armatol A. Discovery of a bromonium-initiated epoxide-opening cascade enabled novel tactics for constructing key fragments found in both natural products and have led us to revise the proposed biogeneses. Other common features found in the routes include convergent fragment c...
متن کاملEpoxide-opening cascades triggered by a Nicholas reaction: total synthesis of teurilene.
The way in which nature approaches the synthesis of complex molecules is a great source of inspiration to organic chemists for planning a synthetic route to a natural product. In this context, cascade cyclizations are considered a valuable tool for obtaining molecular complexity in a straightforward manner. Focusing on polycyclic ethers, it is well accepted by the scientific community that thes...
متن کاملWater overcomes methyl group directing effects in epoxide-opening cascades.
Water is an effective promoter of the endo-selective opening of trisubstituted epoxides, enabling related cascades leading to a variety of substituted ladder polyether structures. When used in conjunction with a tetrahydropyran-templated nucleophile, water can overcome the powerful electronic directing effect of a methyl substituent at either site of the epoxide, making water a uniquely versati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Angewandte Chemie
دوره 48 29 شماره
صفحات -
تاریخ انتشار 2009